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Homework 4 Solution
PHZ 5156, Computational Physics

September 15, 2005

Part 1

With the proposed solution y(t) the matrix product –ay on the right-hand side of the ODE
produces –y. The derivative dy/dt on the left-hand side also produces -y. The two sides are equal,
so the proposed y(t) is indeed a solution.

Completed code:

#Homework 4
#Computational Physics PHZ 5156 September 2005
from scipy import *
from scipy.integrate import odeint
import time
import Gnuplot,Gnuplot.funcutils
from LinearAlgebra import *

def rk4(f,y0,t):
#Implements 4th order Runge Kutta, using an external f(y).
#Usage: y=rk4(f,y0,t)
#Input f is the name of the "RHS" function.
#Input y0 is an array that contains the initial conditions.
#Notice that y0 can have arbitrary length.
#Input t is an array of times.
#Output array y has shape len(t) x len(y0) where
#y[n,:] contains y(tn) for all computed times.

y = zeros( (len(t),len(y0)), Float) # Allocate space
y[0] = y0
tau = t[1]-t[0]
for n in arange(0,len(t)-1):

tn,yn = t[n],y[n]
h1 = tau*f(yn,tn)
h2 = tau*f(yn+h1/2.,tn+tau/2.)
h3 = tau*f(yn+h2/2.,tn+tau/2.)
h4 = tau*f(yn+h3,tn+tau)
y[n+1] = yn + h1/6.+h2/3.+h3/3.+h4/6.

return y

def ode(y,t):
    # RHS of stiff coupled ODE
    return -dot(a,y)
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def analytic(t):
    #Analytic solution
    y1 = 2.*exp(-t)
    y2 = -exp(-t)
    return y1,y2

def part2():

    # Part (2): rk4 with tiny step
    tau = 0.0001
    t = arange( 0., 6+tau, tau)
    y0 = array( (2.,-1.) )
    start = time.clock()
    y = rk4(ode,y0,t)
    finish = time.clock()
    elapsedb = finish - start
    print "\nPart (2)"
    print "rk4 with tau =",tau,"takes time = ",elapsedb
    print "Final values"
    print "y1 analytic:",y1a[-1]
    print "y1 numeric: ",y[-1,0]
    print "y2 analytic:",y2a[-1]
    print "y2 numeric: ",y[-1,1]

    g=Gnuplot.Gnuplot(debug=0)
    g.title('HW 4 Part (2): Stiff ODE solved by RK4 with tau=0.0001')
    g('set data style lines')
    g1 = Gnuplot.Data(ta,y1a,title='y1 ana')
    g2 = Gnuplot.Data(ta,y2a,title='y2 ana')
    g3 = Gnuplot.Data(t,y[:,0],title='y1 RK4')
    g4 = Gnuplot.Data(t,y[:,1],title='y2 RK4')
    g.plot(g1,g2,g3,g4)
    return

def part3():

    #Part (3): RK4 with tau = 0.01
    tau = 0.01
    t = arange( 0.,10*tau, tau )
    y0 = array( (2.,-1.) )
    y = rk4(ode,y0,t)
    y1,y2 = analytic(t)
    print "\nPart (3)"
    print "Values at first 10 times"
    print "y1 analytic:",y1[0:len(t)]
    print "y1 numeric: ",y[:,0]
    print "y2 analytic:",y2[0:len(t)]
    print "y2 numeric: ",y[:,1]

This file contains the code for the entire
homework assignment. Separate parts are
solved in separate functions; these are invoked
from the main program.
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    return

def part4():
    #Part (4): Eigenvalues
    evalues = eigenvalues(a)
    print "\nPart (4)"
    print "Eigenvalues=\n",evalues

def part5():
    #Part (5): odeint with tau = 0.01
    tau = 0.01
    t = arange( 0., 6+tau, tau)
    start = time.clock()
    y0 = array( (2.,-1.) )
    y = odeint(ode,y0,t)
    finish = time.clock()
    elapsede = finish-start
    print "\nPart (5)"
    print "odeint with tau=0.01 takes time = ",elapsede

    g = Gnuplot.Gnuplot(debug=0)
    g.title('HW 4 Part (5): Stiff ODE solved by odeint with tau=0.01')
    g('set data style lines')
    g1 = Gnuplot.Data(ta,y1a,title='y1 ana')
    g2 = Gnuplot.Data(ta,y2a,title='y2 ana')
    g3 = Gnuplot.Data(t,y[:,0],title='y1 odeint')
    g4 = Gnuplot.Data(t,y[:,1],title='y2 odeint')
    g.plot(g1,g2,g3,g4)

    print "Final values at times:",ta[-1],t[-1]
    print "y1 analytic:",y1a[-1]
    print "y1 numeric: ",y[-1,0]
    print "y2 analytic:",y2a[-1]
    print "y2 numeric: ",y[-1,1]

#Main program
a = array( ((-9998,-19998),(9999,19999)), Float)

print "\n HW4 \n"
#Analytic solution
tau = 0.05
ta = arange( 0.0, 6+tau, tau )
y1a,y2a = analytic(ta)  

part2();  part3()
part4();  part5()

Here the four separate functions are
invoked. In fact I commented out all
but one at a time while I was working
on this.
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Part 2

Executing the RK4 code with tau=0.0001 produces the output

This took a very long time to run (nearly 16 seconds) because the step size was so very small. To
go from 0 to 6 with a step size of 0.0001 takes 60,000 iterations of the RK4 algorithm. On the
other hand the numerical results agree exactly with the analytical at the last time step – an
amazing accuracy. The plotted results show the same agreement:

Part 3

Running RK4 with tau=0.01 produces the following output.

The divergence shows that RK4 is unstable for this ODE with tau=0.01.

Part (2)
rk4 with tau = 0.0001 takes time =  15.84
Final values
y1 analytic: 0.00495750435333
y1 numeric:  0.00495750435333
y2 analytic: -0.00247875217667
y2 numeric:  -0.00247875217667

Values at first 10 times
y1 analytic: [ 2.          1.98009967  1.96039735  1.94089107  1.92157888  1.90245885
       1.88352907  1.86478764  1.84623269  1.82786237]
y1 numeric:  [  2.00000000e+00   1.98009967e+00   1.96015930e+00  -9.51417246e+02
       -3.81810495e+09  -1.52911324e+16  -6.12394713e+22  -2.45258020e+29
       -9.82234088e+35  -3.93375028e+42]
y2 analytic: [-1.         -0.99004983 -0.98019867 -0.97044553 -0.96078944 -0.95122942
      -0.94176453 -0.93239382 -0.92311635 -0.91393119]
y2 numeric:  [ -1.00000000e+00  -9.90049834e-01  -9.79960625e-01   9.52387691e+02
        3.81810495e+09   1.52911324e+16   6.12394713e+22   2.45258020e+29
        9.82234088e+35   3.93375028e+42]
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Part 4

The eigenvalues of matrix a are:

This explains what goes wrong in part 3. The RK4 algorithm, like the Euler algorithm, is
conditionally stable for this problem. That is, it is only stable for a step size tau less than some
threshold value. For Euler the stability condition is tau<2/(maximum eigenvalue), that is,
tau<2/10000 (using the result above). I don’t know the stability condition for RK4, but can
guesstimate that tau needs to be less than some number of order 1/(maximum eigenvalue), that is,
tau<O(0.0001). At least it is easy to see the reason for the instability in part 3: tau there is bigger
than the RK4 stability threshold.

Part 5

Running odeint with tau=0.01 produces the output

Notice that this is stable even for the step size tau=0.01 for which RK4 was unstable. The answers
are accurate to about five decimal places. This is less accurate than RK4 with the extremely small
step size tau=0.0001, but is quite satisfactory accuracy. And, most important, odeint gave this
satisfactory result with a larger step size that enabled it to run much faster – an elapsed time of
around 0.01 s. The plotted results also show this good agreement:

Eigenvalues=
[  1.00000000e+00   1.00000000e+04]

odeint with tau=0.01 takes time =  0.00999999999999
Final values at times: 6.0 6.0
y1 analytic: 0.00495750435333
y1 numeric:  0.00495754122813
y2 analytic: -0.00247875217667
y2 numeric:  -0.00247877059452


